184. Organosilicon Compounds. Part XX.* Medium Effects in the Reaction between Trimethylsilylmethylbenzoate Ions and Hydroxide Ion.

By C. Eaborn and S. H. Parker.

Abstract

The reaction between $0-, m$-, and p-trimethylsilylmethylbenzoate ions and alkali-metal hydroxides in water and in aqueous methanol has been studied kinetically over a wide range of ionic strength. Even at the high salt concentrations involved (up to 1 m) the salt-effects are consistent with the Brönsted-Bjerrum theory for reaction between two negative ions.

We have studied the alkaline cleavage of o-, m-, and p-trimethylsilylmethylbenzoic acids in the hope of obtaining more information about the mechanism of cleavage of $\mathrm{C}-\mathrm{Si}$ bonds. Whilst this hope was not realised, the results provide a picture of medium effects in reactions between ions at a time when the theory of these effects is under review. ${ }^{1}$

Salt Effects.-For all three isomers, increase in the concentration of sodium hydroxide causes marked increase in the specific rate constant, k_{s} (the observed first-order rate constant divided by the alkali concentration), as Table 1 shows.

Table 1. Reactions in water at 49.7° of trimethylsilylmethylbenzoate ions.

para-Ion ${ }^{\text {a }}$			
[NaOH]	$10^{2} k_{\mathrm{s}}{ }^{\text {c }}$	[NaOH]	$10^{2} k_{8}{ }^{\text {c }}$
0.983	$6 \cdot 80$	$0 \cdot 102$	$4 \cdot 43$
0.788	$6 \cdot 30$	0.0760	$4 \cdot 25$
0.592	$5 \cdot 95$	0.0525	3.91
$0 \cdot 396$	$5 \cdot 48$	$0 \cdot 0294$	$3 \cdot 61$
$0 \cdot 200$	$4 \cdot 82$	0.0150	3.35

meta-Ion ${ }^{\text {b }}$	
[NaOH]	$10^{4} k_{8}{ }^{\text {c }}$
1.025	6.99
0.530	$5 \cdot 63$
$0 \cdot 282$	$4 \cdot 70$
$0 \cdot 158$	$3 \cdot 89$

ortho-Ion ${ }^{6}$	
$[\mathrm{NaOH}]$	$10^{4} k_{8}{ }^{\text {c }}$
1.025	12.0
0.530	$9 \cdot 25$
0.282	7.28
$0 \cdot 158$	5.83

The values for the para-isomer extend to sufficiently low salt concentrations to provide a test of the Brönsted-Bjerrum theory of salt effects. ${ }^{2}$ According to this the rate of a reaction between two ions, A and B , is given by $k=k_{0} f_{\mathrm{A}} f_{\mathrm{B}} / f_{\ddagger}$, where k_{0} is the rate constant at infinite dilution and $f_{\mathrm{A}}, f_{\mathrm{B}}$, and f_{\ddagger} are the activity coefficients of A, B, and the transition state, respectively. The activity coefficient, f_{i}, of an ion, i , is given by $-\log f_{\mathrm{i}}=$ $Z_{i}{ }^{2} \alpha \mu^{\frac{1}{2}} /\left(1+\beta d_{i} \mu^{\frac{1}{2}}\right)$ where Z_{i} is the charge on the ion, d_{i} the distance of closest approach of another ion to the i-th ion, and β and α are constants (which for water at 49.7° have values of 0.334×10^{8} and 0.503 , respectively ${ }^{3}$). When $Z_{\mathrm{A}}=Z_{\mathrm{B}}=-1$, and the charge on the transition state is consequently -2 , the reaction rate is given by

$$
\begin{equation*}
\log k=\log k_{\mathbf{0}}-\frac{\alpha \mu^{\frac{1}{2}}}{1+\beta d_{\mathrm{A}} \mu^{\frac{1}{2}}}-\frac{\alpha \mu^{\frac{1}{2}}}{1+\beta d_{\mathrm{B}} \mu^{\frac{1}{2}}}+\frac{4 \alpha \mu^{\frac{1}{2}}}{1+\beta d_{\ddagger} \mu^{\frac{1}{2}}} \tag{I}
\end{equation*}
$$

and a mean value, d, being adopted for the distance of closest approach, $\log k=$ $\log k_{0}+2 \alpha \mu^{\frac{1}{2}} /\left(\mathbf{l}+\beta d \mu^{\frac{1}{2}}\right)$.

As required, the variation in the rate of reaction, k_{s}, of the para-isomer with sodium hydroxide can be expressed by an equation, $\log k_{\mathrm{a}}=\log k_{0}+1 \cdot 06 /\left(C+1 / \mu^{\frac{1}{2}}\right)$, as shown by the fair constancy of $\log k_{0}\left[=\log k_{\mathrm{s}}-1 \cdot 06 /\left(1 \cdot 55+1 / \mu^{\frac{1}{2}}\right)\right]$ in Table 2. The value of the constant C corresponds to the reasonable figure of $4.6 \AA$ for the mean distance of closest approach of the ions. The success of this treatment indicates that there are no complications from ion-association even at the highest salt concentrations.

The rates of reaction of the ortho- and the meta-isomer increase more rapidly with

[^0]increasing alkali concentration than does that of the para-isomer. The data extend over a very limited range of concentration, but in both cases an equation of form $\log k_{\mathrm{B}}=$ $\log k_{0}+1 \cdot 06 /\left(C+1 / \mu^{\frac{1}{t}}\right)$ can be derived with moderate success, as Table 3 shows. The values for the mean distance of closest approach of the ions (1.8 and $2.4 \AA$, respectively, for the ortho- and the meta-isomer) are rather low.

The results emphasise that in examining effects of structural change on the rate of reaction between ions, rate constants cannot safely be compared at a fixed ionic strength but must be extrapolated to infinite dilution. Thus the relative reactivities of the paraand the ortho-isomer above are $58: 1$ at a salt concentration of $1.05 \mathrm{~m}, 85: 1$ at a salt concentration of $0 \cdot 18 \mathrm{~m}$, and $100: 1$ at infinite dilution, the derived $\log k_{0}$ values being used.

Table 3.

	ortho-Ion				meta-Ion			
[NaOH]	1.025	0.530	$0 \cdot 282$	0.158	1.025	0.530	$0 \cdot 282$	$0 \cdot 158$
$\mu^{\text {a }}$....	1.050	0.555	$0 \cdot 307$	$0 \cdot 183$	$1 \cdot 050$	0.555	$0 \cdot 307$	$0 \cdot 183$
$-\log k_{B}$	2.921	3.034	3.138	3.234	$3 \cdot 156$	$3 \cdot 250$	$3 \cdot 326$	3.410
$1 \cdot 06 /\left(C+1 / \mu^{t}\right)^{b}$	0.672	0.555	0.443	0.363	$0 \cdot 594$	$0 \cdot 500$	0.407	$0 \cdot 338$
$-\log k_{0}$	3.593	$3 \cdot 589$	3.581	3.597	3.750	3.750	$3 \cdot 735$	3.748

Specific Salt Effects.-At high ionic strengths, salt effects frequently depend upon the nature as well as the concentration of the salts present. ${ }^{1}$ In the reaction of the p-trimethylsilylmethylbenzoate ion, sodium chloride has a markedly smaller effect than sodium hydroxide. Thus at a sodium hydroxide concentration of 0.0294 m the presence of 0.0614 m -sodium chloride increases k_{s} (at 49.7°) from 3.6 to $4.0 \times 10^{-2} \mathrm{~min}^{-1} \mathrm{~mole}^{-1} \mathrm{l}$. whereas in 0.0908 m -sodium hydroxide k_{s} is $c a .4 .4 \times 10^{-2} \mathrm{~min}^{-1} \mathrm{~mole}^{-1} \mathrm{l}$. Again, in the presence of 0.833 m -alkali and 0.491 m -sodium chloride $k_{\mathrm{s}}=6.6 \times 10^{-2} \mathrm{~min}^{-1} \mathrm{~mole}^{-1} \mathrm{l}$., whereas in 1.324 m -alkali $k_{\mathrm{B}}=c a .7 .8 \times 10^{-2} \mathrm{~min} .^{-1} \mathrm{~mole}^{-1} 1$. (by extrapolation).

Table 4. Reaction of the para-ion and various alkalis in water $\left(49 \cdot 7^{\circ}\right)$.

A more interesting aspect of specific salt effects is revealed by the rates of reaction of the p-benzoate with sodium, lithium, and potassium hydroxides. The specific rates depend on which alkali is present, as Table 4 reveals; e.g., at lm-alkali the reaction with

[^1]potassium hydroxide is $c a .1 .5$ times as fast as that with lithium hydroxide. If the specific rates are referred to mean activities instead of concentrations of alkalis (i.e., $k_{\mathrm{a}}=k_{\mathrm{s}} / f_{\mathrm{mOH}}$, where $f_{\text {MOH }}$ is the mean activity coefficient of the alkali) then the specific rates, k_{a}, at a particular alkali concentration are reasonably independent of which alkali is present.

Since, say, the first term on the right-hand side of equation (l) refers to variation of the activity coefficient of hydroxide ion with ionic strength, we have $\log k_{\mathrm{a}}=$ $\log k_{0}+3 \alpha \mu^{\frac{1}{1}} /\left(1+\beta d^{\prime} \mu^{\frac{1}{2}}\right)$ where d^{\prime} is now the mean distance of closest approach of carboxylate ion and of the transition state, and would be expected to be rather larger than d, above, which includes the closest approach distance for hydroxide ion.

A plot of $\log k_{\mathrm{a}}$ against $1 /\left(C+1 / \mu^{\frac{1}{2}}\right.$) (where $C=1 \cdot 7$, corresponding to a mean distance of closest approach of the ions of $5 \cdot 1 \AA$) is, as required, a straight line of slope 1.60 (i.e., 3α), as revealed by the constancy of $\log k_{0}$ in Table $5 ; \log k_{0}$ has the same value as when derived from specific rate constants, k_{s}, above. This plot covers all three alkalis, and it is thus clear that specific effects of the cations are exerted solely on the activity coefficient of the hydroxide ion, the ratio of the activity coefficients of the carboxylate ion and the transition state being independent of the nature of the cation.

Table 5.

	1.6	$\underbrace{\mathrm{KOH}}$		$\underbrace{\mathrm{NaOH}}$		$\mathrm{LiOH}^{\text {L }}$					
					1.6						
[MOH]	$1 \cdot 7+1 / \mu^{\frac{1}{1}}$	$-\log k_{\text {s }}$	$-\log k_{0}$			$-\log k_{\mathrm{a}}$	$-\log k_{0}$	[MOH]	1.7+1/ ${ }^{\text {m }}$	$-\log k_{\text {a }}$	$-\log k_{0}$
0.983	0.592	0.993	1.585	0.991	1.583	1.063	$0 \cdot 600$	1.000	1.600		
0.788	0.566	1.028	1.594	1.033	1.599	0.851	0.576	1.030	1.606		
0.592	0.534	1.048	1.582	1.062	1.596	$0 \cdot 639$	$0 \cdot 523$	1.068	1.591		
$0 \cdot 396$	$0 \cdot 486$	$1 \cdot 106$	1.592	$1 \cdot 105$	1.591	$0 \cdot 427$	$0 \cdot 494$	1.097	1.591		
$0 \cdot 200$	$0 \cdot 408$	$1 \cdot 185$	1.593	$1 \cdot 179$	1.587	$0 \cdot 215$	$0 \cdot 416$	$1 \cdot 173$	1.589		
$0 \cdot 102$	$0 \cdot 334$	1.236	1.570	1.255	1.589	$0 \cdot 109$	$0 \cdot 339$	1-241	1.580		
0.0760	$0 \cdot 269$	1.321	1.590	1.270	1.574	-	-	-	-		
0.0525	-	-	-	$1 \cdot 321$	1.590	-	-	-	-		
0.0294	-	-	-	1.380	1.599	-	-	-	-		
0.0150	-	-	-	1.429	1.602	-	-	-	-		

Change of Solvent.-Equation (1) for salt effects can be applied with fair success to the cleavage of the p-carboxylate ion by sodium hydroxide in $5 \%(\mathrm{w} / \mathrm{w})$ of water in methanol. (Most of the alkali will be present as methoxide ion.) In methanol at 50° (dielectric constant, 30.4) a plot of $\log k_{3}$ against $1 /\left(C+1 / \mu^{\frac{1}{3}}\right)$ should have a slope of 3.7. The values of $\log k_{0}$ derived from the equation $\log k_{\mathrm{s}}=\log k_{0}+3 \cdot 7 /\left(2 \cdot 8+1 / \mu^{\mathrm{t}}\right)$ are reasonably constant as Table 6 shows. The value, $2 \cdot 8$, of C corresponds to a mean distance of closest

Table 6. Cleavage of the para-ion in $5 \%(w / w)$ water-methanol $\left(49.7^{\circ}\right)$.

[NaOH]	1.023	$0 \cdot 869$	0.767	$0 \cdot 630$	0.526	0.396	$0 \cdot 262$	$0 \cdot 130$
${ }^{\text {a }}-\log k_{8}$	$2 \cdot 493$	2.520	2.548	2.585	2.597	$2 \cdot 652$	2.728	2.810
${ }^{\text {b }} 3 \cdot 7 /\left(2 \cdot 8+1 / \mu^{\frac{1}{2}}\right)$	0.977	0.955	0.943	0.914	0.888	0.844	0.781	$0 \cdot 670$
$-\log k_{0}$	$3 \cdot 470$	$3 \cdot 475$	$3 \cdot 491$	$3 \cdot 499$	$3 \cdot 485$	$3 \cdot 496$	3.509	$3 \cdot 480$

approach of the ions of $5.5 \AA$ (since $\beta=0.507 \times 10^{8}$) in good agreement with the figures of $4.5 \AA$ for the reaction in aqueous solution where the alkali is all present as hydroxide ion. If the derived value of $\log k_{0}$ is correct then the presence of 1 m -alkali causes a 10 -fold rate increase in the specific rate constant.

The effect on k_{B} (at 49.7°) of change of solvent from water to $39 \%(\mathrm{w} / \mathrm{w})$ of water in methanol is shown in Table 7 for all three isomers at the same sodium hydroxide concentration $(0.98 \mathrm{~m})$, along with the accompanying changes in the energy and entropy factors of the Arrhenius equation. The rate is decreased in all three cases, more for the metacompound than for the other two. (It is clear from the discussion above that the rate
ratios would be substantially different at infinite dilution.) Such a decrease in rate on going to a less polar medium is expected for a reaction between ions of like charge. ${ }^{7}$

For uncharged benzyltrimethylsilanes increase in activation energy caused by structural change is accompanied by increase in the $\log A$ factor, while in the case of the carboxylate ions increase in E between para- and ortho- and meta-isomers is accompanied by decrease

Table 7.

in $\log A$. This is because of direct interaction between the negative charges on the reactants, ${ }^{7}$ which will be least important for the para-compound since the charges will be furthest apart in the transition state. This interaction, operating through both E and $\log A$, along with the larger inductive effect from the ortho-position, is sufficient to account for the low reactivity of the ortho-compound compared with the para-isomer.

The Mechanism of the Cleavage.-The kinetics of the reactions between neutral benzyltrimethylsilanes and sodium hydroxide are consistent with either of the two mechanisms below, of which (a) involves synchronous attack of hydroxide ion and separation of the benzyl ion, and (b) initial formation of a quinquecovalent silicon intermediate. ${ }^{6}$ (In both cases the benzyl anion will react rapidly with solvent.)
(a)
 (transition state)
(b)

At first sight, when $\mathrm{X}=\mathrm{CO}_{2}{ }^{-}$, the close agreement of the salt effects with those expected for reaction between two negative ions seem to rule out mechanism (b), since the rate-determining step in this involves a doubly-charged reactant and a doubly-charged transition state and will not be much affected by ionic-strength changes. However, the salt effects are determined by change from the original ground state (i.e., separate negative ions) to this doubly-charged transition state, and thus will be the same in mechanisms (b) and (a). Similar conclusions can be reached by considering the effect on the overall rate of variation in the equilibrium constant of step (1) with ionic strength.

Experimental

For reactions in water the acids were dissolved in a slight excess of aqueous alkali and a suitable volume of this solution was added to more concentrated alkali to initiate reaction. The reactions were followed spectrophotometrically as previously described. ${ }^{6}$
${ }^{6}$ Eaborn and Parker, J., 1955, 126.
${ }^{7}$ Frost and Pearson, op. cit., p. 133.

[^0]: * Part XIX, J., 1957, 498.
 ${ }^{1}$ Harty and Rollefson, J. Amer. Chem. Soc., 1954, 78, 4811, and references therein.
 ${ }^{2}$ Frost and Pearson, " Kinetics and Mechanism," John Wiley and Sons Inc., New York, 1953, p. 138.
 ${ }^{3}$ Robinson and Stokes, "Electrolyte Solutions," Butterworths Scientific Publications, London, 1955, pp. 228, 491.

[^1]: 4 Harned and Swindells, J. Amer. Chem. Soc., 1926, 48, 126.
 ${ }^{5}$ Conway, " Electrochemical Data," Elsevier Publishing Co., 1952, pp. 87, 88.

